Filière : MAITRISE TECHNOLOGIE MECANIQUE

Matière : CAPTEURS ET ACTIONNEURS

Durée de l'épreuve : 2 h

Enseignant responsable : Edouard Laroche

Nombre de pages constituant le sujet (celle-ci incluse) : 3

Matériel autorisé :

☐ Tous documents autorisés (ceci inclut les calculettes),
☐ Calculettes autorisées. Les mémoires doivent avoir été vidées avant le début de l'épreuve.
☐ Calculettes interdites.
☐ Documents interdits.
Université Louis Pasteur
Maîtrise de Technologie Mécanique
Examen de Janvier 2005
Enseignant : E. Laroche

Capteurs et Actionneurs

durée : 2 heures
sans document
sans calculatrice

Exercice 1 : Précision d’un capteur

Expliquez quelles sont les limitations d’un capteur. Vous pourrez vous appuyer sur des exemples que vous connaissez.

Exercice 2 : Chaîne d’alimentation d’un moteur électrique

On considère une chaîne d’alimentation de moteur électrique représentée ci-dessous où les connexions électriques, monophasées ou triphasées, sont représentées par un seul trait.

1. Précisez pour chaque ligne liant deux blocs s’il s’agit d’un câble monophasé ou triphasé et s’il s’agit d’un régime alternatif ou continu. Vous distinguerez les différents cas d’une alimentation monophasée/triphasée et d’un moteur monophasé/triphasé.

2. La chaîne d’alimentation permet-elle d’entrainer le moteur à vitesse variable où seulement à vitesse constante ? Justifiez.

3. Quels interrupteurs représentent les symboles des blocs n°2 et 4 ? Comment fonctionnent-ils ?

4. Quel convertisseur représente le bloc n°2 ?

5. Quel convertisseur représente le bloc n°4,
 a. dans le cas d’un moteur à courant continu ?
 b. dans le cas d’un moteur asynchrone ?

6. On souhaite pouvoir utiliser le moteur pour freiner. Expliquez cette possibilité et notamment les aménagements à prévoir sur la chaîne d’alimentation.

![Chaîne d’alimentation d’un moteur électrique](image-url)
Exercice 3 : Fonction de transfert d’un moteur à courant continu

Le moteur à courant continu à aimants permanents a les équations suivantes :

\[E(t) = K \Omega(t) \]
\[C_m(t) = K_i(t) \]
\[u(t) = E(t) + R i(t) + L \frac{d i}{d t} \]
\[J \frac{d \Omega}{d t} = C_m(t) - C_r(t) \]

où \(u \) et \(i \) sont la tension et le courant d’induit.

1. Expliquez à quoi correspondent les différentes grandeurs du modèle.
2. Dans le cas où \(C_r = f \Omega \), déterminez la fonction de transfert entre \(u \) et \(i \).
3. Représentez son diagramme de Bode.

Exercice 4 : Mesures sur un moteur asynchrone

Sur les lignes électriques alimentant un moteur asynchrone triphasé, on fait les mesures suivantes :

- Valeur efficace de la tension entre deux phases : 400 V
- Courant dans une phase : 10 A
- Puissance totale absorbée par le moteur : 3460 W

Déterminez :

1. Le facteur de puissance
2. Le déphasage entre la tension et le courant. Vous préciserez lequel est en avance sur l’autre.

N.B. : on donne \(\sqrt{2} \equiv 1,41 \), \(\sqrt{3} \equiv 1,73 \) et \(\exp(1) \equiv 2,72 \).