17 Formulaire Signaux et systèmes

17.1 Systèmes analogiques

Produit de convolution pour des systèmes caux

\[y(t) = \int_0^t h(\theta) x(t-\theta) \, d\theta = \int_0^t x(\theta) h(t-\theta) \, d\theta \]

Transformation de Laplace

\[\epsilon(t) \leftrightarrow \frac{1}{s} \quad \exp(-at) \leftrightarrow \frac{1}{s+a} \]

\[\cos(\omega t) \leftrightarrow \frac{s}{s^2 + \omega^2} \quad \sin(\omega t) \leftrightarrow \frac{\omega}{s^2 + \omega^2} \]

\[x(t \to 0) = s \left. X(s) \right|_{s \to \infty} \quad x(t \to \infty) = s \left. X(s) \right|_{s \to 0} \]

Formes canoniques de Bode et de Laplace

\[1 + \frac{s}{\omega_1} \quad 1 + \frac{1}{Q_0} \frac{s}{\omega_n} + \left(\frac{s}{\omega_n} \right)^2 \]

\[s + \omega_1 \quad s^2 + 2\zeta \omega_n s + \omega_n^2 \quad \zeta \equiv \frac{1}{2Q_0} \]

Stabilité et instants caractéristiques

\[\text{stabilité} \quad \Rightarrow \quad \Re (p_k) < 0 \]

\[\tau = \frac{1}{|\Re (p_k)|}, \quad T_p = \frac{2\pi}{|\Im (p_k)|}, \quad t_{\text{trans}} \simeq 5 \tau, \quad N_{\text{osc}} = \frac{t_{\text{trans}}}{T_p} \simeq \frac{|\Im (p_k)|}{|\Re (p_k)|} \]
17 Formulaire Signaux et systèmes

Réponse indicielle d’un système d’ordre 2

\[Y(s) = X(s)G(s) = \frac{1}{s} \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \]

\[D(s) = 0 \Rightarrow p_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2} \equiv -\frac{1}{\tau} \pm j\omega_p \quad \text{si} \ \zeta < 1 \]

\[t_{5\%} \approx 3\tau \quad \text{et} \quad \zeta_{opt} = \frac{1}{\sqrt{2}} \]

Systèmes contre-réactionnés

\[G_{bf}(s) \equiv G_w(s) \equiv \frac{Y(s)}{W(s)} = \frac{G(s)}{1 + G(s)H(s)} \]

17.2 Signaux analogiques

Valeurs efficaces des signaux carrés, sinusoïdaux et triangulaires d’amplitude \(A \)

\[X_{car,eff} = A = \frac{A}{\sqrt{1}} \quad X_{sin,eff} = \frac{A}{\sqrt{2}} \quad X_{tri,eff} = \frac{A}{\sqrt{3}} \quad \text{avec} \ X_{dc} = 0 \]

Signaux périodiques développés en séries de Fourier

\[x(t) = \sum_{k=-\infty}^{+\infty} X(jk) \exp (+j2\pi kf_0 t) \quad \text{avec} \quad X(jk) = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) \exp (-j2\pi kf_0 t) \ dt \]

\[x(t) = A_0 + \sum_{k=1}^{\infty} A_k \cos (2\pi kf_0 t + \alpha_k) \quad \text{avec} \quad \begin{cases} A_0 = X(j0) \\ A_k = 2 \left| X(jk) \right| \\ \alpha_k = \angle X(jk) \end{cases} \]

SIR centrée d’amplitude \(A \), de période \(T \) et de largeur \(\Delta t \)

\[X(jk) = A \frac{\Delta t \sin \left(\frac{k\pi f_0 \Delta t}{T} \right)}{\frac{k\pi f_0 \Delta t}{T}} = A \frac{\Delta t}{T} \sin(\frac{k\pi f_0 \Delta t}{T}) \]

SIT centrée d’amplitude \(A \), de période \(T \) et de largeur \(2\Delta t \)

\[X(jk) = A \frac{\Delta t}{T} \left(\frac{\sin \left(\frac{k\pi f_0 \Delta t}{T} \right)}{\frac{k\pi f_0 \Delta t}{T}} \right)^2 = A \frac{\Delta t}{T} \sin^2(\frac{k\pi f_0 \Delta t}{T}) \]

SIE d’amplitude \(A \), de période \(T \) et de constante de temps \(\tau \)

\[X(jk) = A \frac{\tau}{T} \frac{1 - \exp \left(-\frac{(T \tau + j2\pi kf_0 \tau)}{1 + j2\pi kf_0 \tau} \right)}{(1 + j2\pi kf_0 \tau)} \simeq A \frac{\tau}{T} \frac{1}{1 + j2\pi kf_0 \tau} \quad \text{si} \ \tau \ll T \]
17.3 Échantillonnage des signaux

Quelques propriétés des séries de Fourier

Puissance : \[P \equiv \frac{1}{T} \int_{t_0}^{t_0+T} x^2(t) \, dt = \sum_{-\infty}^{+\infty} |X(jk)|^2 = P_{dc} + P_{ac} \]

\[P \equiv X_{eff}^2 = A_0^2 + \frac{1}{2} \sum_{k=1}^{\infty} A_k^2 = X_{dc}^2 + X_{ac}^2 \]

décalage : \[y(t) = x(t + t_d) \iff Y(jk) = \exp (+j2\pi k f_0 t_d) \ X(jk) \]

modulation : \[x(t) = \exp (\pm j2\pi f_p t) \cdot m(t) \iff X(jk) = M (j (k f_0 \mp f_p)) \]

rotation : \[y(t) = x(-t) \iff Y(jk) = X^*(jk) \]

Signaux non périodiques (transformation de Fourier)

\[x(t) = \int_{-\infty}^{+\infty} X(jf) \exp (+j2\pi f t) \, df \iff X(jf) = \int_{-\infty}^{+\infty} x(t) \exp (-j2\pi f t) \, dt \]

convolution : \[x(t) \otimes h(t) \iff H(jf) \cdot X(jf), \quad h(t) \cdot x(t) \iff H(jf) \otimes X(jf) \]

énergie : \[W = \int_{-\infty}^{+\infty} x^2(t) \, dt = \int_{-\infty}^{+\infty} |X(jf)|^2 \, df \quad [\text{V}^2 \text{sec}] \text{ ou } [\text{V}^2 / \text{Hz}] \]

valeurs à l'origine : \[x(t = 0) = \int_{-\infty}^{+\infty} X(jf) \, df, \quad X(f = 0) = \int_{-\infty}^{+\infty} x(t) \, dt \]

Impulsion rectangulaire d’amplitude \(A \) et de largeur \(\Delta t \)

\[x(t) = A \text{rect} \left(\frac{t}{\Delta t} \right) \iff X(jf) = A \Delta t \frac{\sin (\pi f \Delta t)}{\pi f \Delta t} = A \Delta t \text{sinc} (f \Delta t) \]

Filtre passe-bas idéal : \(H(jf) = 1 \) si \(-\Delta f < f < +\Delta f\)

\[H(jf) = \text{rect} \left(\frac{f}{2\Delta f} \right) \iff h(t) = 2\Delta f \frac{\sin (2\pi \Delta f t)}{2\pi \Delta f t} = 2\Delta f \text{sinc} (2\Delta f t) \]

17.3 Échantillonnage des signaux

Signaux échantillonnés

\[x_e(t) = x(t) \cdot \delta_{T_e}(t) \iff X_e(jf) = X(jf) \otimes D(jf) = \frac{1}{T_e} \sum_{m=-\infty}^{+\infty} X(j(f - m f_e)) \]
17 Formule Signaux et systèmes

recouvrement spectral : \(f_{app} = |m f_e - f| < \frac{f_e}{2}, \quad m > 1 \)

théorème de Shannon : \(f_e > 2 f_{max} \), pratiquement : \(f_e \approx (3 ... 5) f_{max} \)

filtre anti-recouvrement (le plus souvent de type Butterworth d’ordre \(m = 8 \)) :

\[
H(f) = \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^{2m}}}
\]

Bruit de quantification d’un convertisseur \(n \) bits

\[
Q = \frac{\Delta_{CAN}}{2^n} = \frac{U_{max}}{2^{n-1}}, \quad Q_{eff} = \frac{Q}{\sqrt{12}}, \quad SNR \equiv \frac{X_{eff}}{Q_{eff}}
\]

non linéarité = perte du bit LSB (de moindre poids)

\[
SNR_{max} [\text{dB}] \approx 6 n_{bits} - 6 \quad (y \text{ compris la perte du bit LSB})
\]

17.4 Signaux et systèmes numériques

Transformation en \(z \) (systèmes causaux)

\[
X(z) = \sum_{n=0}^{+\infty} x[n] z^{-n}, \quad z = \text{décalage avant}
\]

\[
Y(z) = H(z) \cdot X(z)
\]

\[
y[n] = h[n] \otimes x[n] = \sum_{k=0}^{N-1} h[k] x[n - k] \quad 0 \leq n < \infty
\]

\[
y[n = 0] = Y(z)|_{z \to \infty}, \quad y[n \to \infty] = (z - 1) Y(z)|_{z = 1}
\]
17.4 Signaux et systèmes numériques

<table>
<thead>
<tr>
<th>$x[n]$</th>
<th>$n \geq 0$</th>
<th>$X(z)$</th>
<th>$x(t)$</th>
<th>$t \geq 0$</th>
<th>$X(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta[n]$</td>
<td>1</td>
<td></td>
<td>$\delta(t)$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$\epsilon[n]$</td>
<td>$\frac{z}{z-1}$</td>
<td></td>
<td>$\epsilon(t)$</td>
<td>$\frac{1}{s}$</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>$\frac{z}{(z-1)^2}$</td>
<td></td>
<td>t</td>
<td>$\frac{1}{s^2}$</td>
<td></td>
</tr>
<tr>
<td>α^n</td>
<td>$\frac{z}{z-\alpha}$</td>
<td></td>
<td>$\exp(-a , t)$</td>
<td>$\frac{1}{s+a}$</td>
<td></td>
</tr>
<tr>
<td>$\cos(n , \Omega_0)$</td>
<td>$\frac{z^2 - \cos \Omega_0 , z}{z^2 - 2 \cos \Omega_0 , z + 1}$</td>
<td></td>
<td>$\cos(\omega_0 t)$</td>
<td>$\frac{s}{s^2 + \omega_0^2}$</td>
<td></td>
</tr>
<tr>
<td>$\sin(n , \Omega_0)$</td>
<td>$\frac{\sin \Omega_0 , z}{z^2 - 2 \cos \Omega_0 , z + 1}$</td>
<td></td>
<td>$\sin(\omega_0 t)$</td>
<td>$\frac{\omega_0}{s^2 + \omega_0^2}$</td>
<td></td>
</tr>
<tr>
<td>$\alpha^n , \cos(n , \Omega_0)$</td>
<td>$\frac{z^2 - \alpha \cos \Omega_0 , z}{z^2 - 2 \alpha \cos \Omega_0 , z + \alpha^2}$</td>
<td></td>
<td>$\exp(-a , t) , \cos(\omega_0 t)$</td>
<td>$\frac{s}{(s+a)^2 + \omega_0^2}$</td>
<td></td>
</tr>
<tr>
<td>$\alpha^n , \sin(n , \Omega_0)$</td>
<td>$\frac{\alpha \sin \Omega_0 , z}{z^2 - 2 \alpha \cos \Omega_0 , z + \alpha^2}$</td>
<td></td>
<td>$\exp(-a , t) , \sin(\omega_0 t)$</td>
<td>$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$</td>
<td></td>
</tr>
</tbody>
</table>

Produit de convolution (systèmes causaux RIF de longueur N)

$$y[n] = \sum_{k=0}^{N-1} x[k] \, h[n-k] = \sum_{k=0}^{N-1} h[k] \, x[n-k] \quad 0 \leq n < \infty$$

$$H(z) \equiv \frac{Y(z)}{X(z)} = h[0] + h[1] \, z^{-1} + h[2] \, z^{-2} + \cdots$$

Équations aux différences (systèmes causaux RII d’ordre N)

$$y[n] + a_1 \, y[n-1] + a_2 \, y[n-2] + \cdots = b_0 \, x[n] + b_1 \, x[n-1] + b_2 \, x[n-2] + \cdots$$

$$H(z) \equiv \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 \, z^{-1} + b_2 \, z^{-2} + \cdots}{1 + a_1 \, z^{-1} + a_2 \, z^{-2} + \cdots} = \frac{b_0 \, z^N + b_1 \, z^{N-1} + b_2 \, z^{N-2} + \cdots}{z^N + a_1 \, z^{N-1} + a_2 \, z^{N-2} + \cdots}$$

Schéma fonctionnel (ordre 2)
Stabilité et instants caractéristiques (ordre 2)
pôles de $H(z) \Rightarrow D(z) = z^2 + a_1 z + a_2 = 0$
d'où $p_{1,2} = a \pm jb = R \exp(\pm j\Omega)$
avec $R = \sqrt{a^2 + b^2}$, $\Omega = \arctan \left(\frac{b}{a}\right)$

stabilité $\Rightarrow |p_k| = R < 1$

$K_c = \frac{1}{|\ln(R)|}$

$K_{tr} \simeq 5 K_c = \frac{5}{|\ln(R)|}$

$K_p = \frac{2\pi}{\Omega}$

$N_{osc} = \frac{K_{tr}}{K_p} = \frac{5}{2\pi} \frac{\Omega}{|\ln(R)|}$

Fonctions de transfert et réponses fréquentielles (ordre 2)

$H(j\Omega) = H(z) \big|_{z = e^{+j\Omega}} = \frac{b_0 + b_1 e^{-j\Omega} + b_2 e^{-j2\Omega}}{1 + a_1 e^{-j\Omega} + a_2 e^{-j2\Omega}} = \frac{b_0 e^{+j2\Omega} + b_1 e^{+j\Omega} + b_2}{e^{+j2\Omega} + a_1 e^{j\Omega} + a_2}$

$f = 0 \Leftrightarrow \Omega = 0 \Leftrightarrow z = +1 \Rightarrow H(f = 0) = \frac{b_0 + b_1 + b_2}{1 + a_1 + a_2}$

$f = \frac{f_c}{4} \Leftrightarrow \Omega = \frac{\pi}{2} \Leftrightarrow z = +j \Rightarrow H \left(\frac{f_c}{4} \right) = \frac{-b_0 + j b_1 + b_2}{-1 + j a_1 + a_2}$

$f = \frac{f_c}{2} \Leftrightarrow \Omega = \pi \Leftrightarrow z = -1 \Rightarrow H \left(\frac{f_c}{2} \right) = \frac{b_0 - b_1 + b_2}{1 - a_1 + a_2}$
17.5 Analyse spectrale numérique

cf figure 17.1.
Fig. 17.1: Analyse spectrale numérique

Domaine analogique

\[x(t) = \int_{-\infty}^{+\infty} X(jf) \exp(+j2\pi ft) \, df \]

\[X(jf) = \int_{-\infty}^{+\infty} x(t) \exp(-j2\pi ft) \, dt \]

Interface et discrétisation

\[\Delta t = T_e = \frac{T}{N} = \frac{1}{f_e} \]

\[X_D[jk] = \sum_{k=0}^{N-1} x[n] \exp(+j2\pi \frac{kn}{N}) \]

\[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_D[jk] \exp(+j2\pi \frac{kn}{N}) \]

Domaine numérique

\[X_D[jk] = \sum_{n=0}^{N-1} x[n] \exp(-j2\pi \frac{kn}{N}) \]

avec \[X_{SF}(jk) = \frac{X_D[jk]}{N} \]