Note de cours

GCH3220

Cours #1
Introduction

• Sources de rejets liquides
 – Rejets municipaux
 – Rejets industriels
 – Rejets agricoles

• Principales caractéristiques des eaux usées
 – Solides en suspension
 – Matières organiques
 – Nutriments (N, P)
CARACTÉRISTIQUES PHYSIQUES DES EAUX

Turbidité : Causée par les particules qui empêchent le passage de la lumière.

Solides : Toutes les impuretés sauf les gaz. Classés selon:
- État
- Grosseur
- Caractéristiques chimiques

Solides décantables : Solides qui décantent dans un cône Imhoff après 1 heure.

Solides suspension : Solides retenus sur un filtre de 1,2 μm.

Solides dissous : Solides qui passent le filtre de 1,2 μm. Aussi appelés solides filtrables.
FIGURE 2.7

Interrelationships of solids found in water and wastewater. In much of the water quality literature, the solids passing through the filter are called dissolved solids.
Exemple 2.2

Une eau de rivière est filtrée (1,2 µm):

Volume filtré : 200 mL
Tare du filtre : 1,3255 g
Masse totale : 1,3286 g

Quelle est la concentration de solides en suspension?

Masse des solides retenus.

\[M = 1,3286 - 1,3255 = 0,0031 \text{ g} \]

Concentration

\[SS = \frac{3,1 \text{ mg} \times 1000 \text{ mL/L}}{200 \text{ mL}} = 15,5 \text{ mg/L} \]
Odeurs

Provient de:

- Matières organiques en décomposition
- H₂S
- Algues

Très difficiles à mesurer.

<table>
<thead>
<tr>
<th>TABLE 2.4</th>
<th>Categories of Offensive Odors Commonly Encountered in Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPOUND</td>
<td>TYPICAL FORMULA</td>
</tr>
<tr>
<td>Amines</td>
<td>CH₃(CH₂)nNH₂</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
</tr>
<tr>
<td>Diamines</td>
<td>NH₂(CH₂)nNH₂</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>H₂S</td>
</tr>
<tr>
<td>Mercaptans</td>
<td>CH₃SH; CH₃(CH₂)nSH</td>
</tr>
<tr>
<td>Organic sulfides</td>
<td>(CH₃)₂S; CH₃SSCH₃</td>
</tr>
<tr>
<td>Skatole</td>
<td>C₈H₅NHCH₃</td>
</tr>
</tbody>
</table>

Source: From Ref. [2.24].

Température affecte

- Cinétique de réaction
- Constantes d’équilibre
- Solubilité des gaz et des minéraux
- Croissance et la respiration des vivants

2-14
3. Dureté non carbonatée (DNC)

\[
\begin{align*}
\text{DNC}_1 &= DT_1 - DC_1 = 6 - 3 = 3 \text{ eq/m}^3 \\
\text{DNC}_2 &= DT_2 - DC_2 = 6 - 6 = 0 \text{ eq/m}^3
\end{align*}
\]

Matières organiques (MO) dans les eaux

Dans eaux naturelles MO faibles.

Dans eaux usées MO élevées.

Sources de MO

- Décomposition de substances végétales.
- Rejets d'égouts domestiques, industriels, agricoles.
- Acide humique: composé de masse moléculaire élevée, résultat de la décomposition de substances végétales.
Problèmes causés par MO

- Couleur;
- Goûts et odeur;
- Baisse de O_2 dissous;
- Interférence avec traitement;
- Formation organo-halogénés.

Matières organiques naturelles

MO: Combinaison de carbone
 hydrogène
 oxygène
 azote
 phosphore
 sulfures

Dans les eaux usées: protéines (40% à 60%)
 hydrates de carbone (25% à 50%)
 lipides (10%)
Protéines

Constituant principal des tissus animaux. Contiennent C, H, O, N (15%), sulfure. Composés d’acide aminé (glycine = CH₅NO₂)

Hydrates de carbone

Classification

- Mono-di-tri-tetra-polysaccharides, monosaccharide courant-glucose (C₆H₁₂O₆).

- Hydrates de carbone avec masse moléculaire faible (mono et di) sont solubles.

- Très facilement biodégradables (exception cellulose, fibre bois). Entraîne baisse rapide de O₂ dissous.

Lipides

- Constituant des tissus animaux et végétaux.
- Insoluble dans eau.
- Soluble dans solvant organique: Graisse, huile, cire.
- Peu biodégradable.

Composés organiques synthétiques

- Plus de 100 000 composés synthétisés depuis 1940.
- Pas tous utilisés intensivement.

Surfactants

Avant 1965: peu biodégradable.

Pesticides utilisés en agriculture

Toxiques
Cancérogènes
Voir table 2.14
Solvants industriels

Cancérogènes?

Trihalométhanés (THM)

Chlore + précurseurs

\[\downarrow \]

THM + autres

Précurseurs: substances naturelles ou synthétiques.

Mesure de MO

1. Demande chimique en \(O_2 \) (DCO).

2. Carbone organique total (COT).

3. Demande totale en \(O_2 \) (DTO).

4. Demande biochimique en \(O_2 \) (DBO).

5. Demande théorique en \(O_2 \) (DThO).
Demande chimique en O_2

- On mesure la quête totale de O_2 pour oxyder la MO (oxydant et catalyseur).
- Réalisée en 3 heures.
- Pas d'information sur la cinétique.
- Pas de distinction biologiques-minérales.
- Interférence avec chlorures.

Carbone organique total (COT)

- Échantillon est évaporé et oxydé de façon catalytique jusqu'au CO_2.

Demande totale en O_2

- MO et quelques substances inorganiques converties en CO_2 et H_2O.

Oxygène dissous et demande en O_2

- Présence de O_2 dissous dans eau essentielle à la vie aquatique.
- Dans les eaux naturelles oxydation biochimique de MO.
MO + O₂ + Nutriments \[\text{Microorganismes}\] (2.68)
CO₂ + H₂O + Cellules + Nutriments + Énergie

Demande biochimique en oxygène

- Toutes MO sont biodégradables.
- Certaines le sont très lentement (cellulose, lignine, ...).
- On veut demande en O₂ ultime + cinétique de consommation de O₂
- Solubilité de O₂ est limitée
 Calculez la solubilité de O₂ à 20°C
 Indice: Loi de Henry

Mesure de la DBO

1. Placez des parties aliquotes* dans une bouteille de 300 ml.
2. Remplir avec de l’eau de dilution.
3. Mesure O₂ avant et après incubation.
 * Aliquots: Contenu un nombre de fois exact dans un tout.
Remarques

1. Pour certaines eaux il faut ajouter des microorganismes.

2. On doit vérifier si suffisamment de nutriments.

\[D_1 \quad : \quad \text{OD de l'échantillon (début).} \]
\[D_2 \quad : \quad \text{OD de l'échantillon (fin).} \]
\[B_1 \quad : \quad \text{OD de dilution (début).} \]
\[B_2 \quad : \quad \text{OD de dilution (fin).} \]
\[D_1 - D_2 \quad : \quad \text{Consommation O}_2 \text{ dans échantillon.} \]
\[B_1 - B_2 \quad : \quad \text{Consommation O}_2 \text{ dans témoin.} \]
DBO = \frac{(D_1 - D_2) - (B_1 - B_2)f}{P} \quad (2.69)

f : \frac{\% \text{ eau dilution dans échantillon}}{\% \text{ eau dilution dans contrôle}}

P : \text{fraction de l'échantillon utilisé}

EXAMPLE 2.9

DETERMINATION OF BIOCHEMICAL OXYGEN DEMAND

A water sample is diluted by a factor of 10 using seeded dilution water according to the methods described in Standard Methods [2.32]. Dissolved oxygen concentration is measured at 1-d intervals, and the results are listed below. Using these data, determine the sample BOD as a function of time.

<table>
<thead>
<tr>
<th>TIME, d</th>
<th>DILUTED SAMPLE DISSOLVED OXYGEN, g/m^3</th>
<th>SEEDED BLANK DISSOLVED OXYGEN, g/m^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.55</td>
<td>8.75</td>
</tr>
<tr>
<td>1</td>
<td>4.35</td>
<td>8.70</td>
</tr>
<tr>
<td>2</td>
<td>4.05</td>
<td>8.66</td>
</tr>
<tr>
<td>3</td>
<td>3.35</td>
<td>8.61</td>
</tr>
<tr>
<td>4</td>
<td>2.75</td>
<td>8.57</td>
</tr>
<tr>
<td>5</td>
<td>2.40</td>
<td>8.53</td>
</tr>
<tr>
<td>6</td>
<td>2.10</td>
<td>8.49</td>
</tr>
<tr>
<td>7</td>
<td>1.85</td>
<td>8.46</td>
</tr>
</tbody>
</table>
Solution

\[
f = \frac{\% \text{ eau dilution dans échantillon}}{\% \text{ eau dilution dans contrôle}} = \frac{90}{100}
\]

\[P = \frac{\text{échantillon}}{\text{vol. incubé}} = \frac{30}{300} = 0,1\]

\[
\text{DBO} = \frac{(D_1 - D_2) - (B_1 - B_2)f}{P}
\]

\[T = 1d\]

\[
\text{DBO} = \frac{(8,55 - 4,35) - (8,75 - 8,70)0,9}{0,1} = 41,55
\]

<table>
<thead>
<tr>
<th>Temps, d</th>
<th>DBO, g/m³</th>
<th>Temps, d</th>
<th>DBO, g/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,00</td>
<td>4</td>
<td>56,4</td>
</tr>
<tr>
<td>1</td>
<td>41,5</td>
<td>5</td>
<td>59,5</td>
</tr>
<tr>
<td>2</td>
<td>44,2</td>
<td>6</td>
<td>62,2</td>
</tr>
<tr>
<td>3</td>
<td>50,8</td>
<td>7</td>
<td>64,4</td>
</tr>
</tbody>
</table>

\[T = 2d\]

\[
\text{DBO} = \frac{(8,55 - 4,05) - (8,75 - 8,66) \times 0,9}{0,1} = 44,19
\]

2-54
(a) Ultimate carbonaceous biochemical oxygen demand of waste sample (BOD_v)

Total amount of organic matter remaining in BOD bottle

Point at which organic matter remaining in BOD bottle is essentially all in the form of cell tissue

Oxygen consumed (e.g., BOD exerted)

Bacterial mass (cell tissue)

Time, t

BOD_v (remaining)

Lag phase

Stationary growth phase

Log growth phase

Amount of organic waste remaining

(b) Amount of organic matter remaining (actual and idealized)

Idealized BOD curve

Organic waste remaining and oxygen consumed expressed in BOD units

BOD_v

Idealized

Actual

$BOD = BOD_v - BOD$.

Time, t

BOD_v
Modélisation de la DBO

\[\frac{d(DBO_r)}{dT} = -k (DBO_r) \]
(2.70)

*DBO*_r : DBO restant au temps T.
*DBO*_u : DBO ultime.

k : constante de réaction

\[\int_{DBO_u}^{DBO_r} \frac{d(DBO_r)}{(DBO_r)} = -k \int_0^t dt \]

\[\ln \left[\frac{DBO_r}{DBO_u} \right] = -kt \]
(2.71)

\[DBO_r = DBO_u e^{-kt} \]
(2.72)

On veut plutôt la DBO exercée à t.

\[DBO_t = DBO_u - DBO_r \]

\[= DBO_u - DBO_u e^{-kt} \]

\[DBO_T = DBO_u (1 - e^{-kt}) \]
(2.73)
DBO_u : Indépendante des conditions expérimentales.

k : Dépend des bactéries, du substrat et de la température.

Mesure de k et DBO_u

Par moindre carré.

\[na + b \sum y - \sum y' = 0 \quad (2.74) \]

\[a \sum y + b \sum y^2 - \sum yy' = 0 \quad (2.75) \]

où

$y : \text{DBO}_t$

$n : \text{Nb de points}$

$b : -k$

$a : -b\text{DBO}_u$

$y' : (y_{n+1} - y_{n-1}) / 2 \Delta t$

Exemple 2.10

À partir des données suivantes calculez k et DBO_u.

<table>
<thead>
<tr>
<th>Temps</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBO</td>
<td>15,8</td>
<td>26,7</td>
<td>37,4</td>
<td>45,9</td>
<td>50,1</td>
<td>56,1</td>
</tr>
</tbody>
</table>
SOLUTION:

1. Set up a computational table.

Application of Eqs. (2.74) and (2.75) involves setting up a table of data points. Note that the number of data points used is \(n = 1 \) because of the definition of \(y' \).

<table>
<thead>
<tr>
<th>(t), (d)</th>
<th>(y'), g/m(^3)</th>
<th>(y'^2), (g/m(^3))(^2)</th>
<th>(y'^2), g/m(^3) \cdot d</th>
<th>(y'y''), (g/m(^3))(^2) \cdot d(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>15.8</td>
<td>249.6</td>
<td>13.4</td>
<td>211.7</td>
</tr>
<tr>
<td>2</td>
<td>26.7</td>
<td>712.9</td>
<td>10.8</td>
<td>288.4</td>
</tr>
<tr>
<td>3</td>
<td>37.4</td>
<td>1398.9</td>
<td>9.6</td>
<td>359.0</td>
</tr>
<tr>
<td>4</td>
<td>45.9</td>
<td>2106.8</td>
<td>6.4</td>
<td>293.8</td>
</tr>
<tr>
<td>5</td>
<td>50.1</td>
<td>2510.0</td>
<td>5.1</td>
<td>255.5</td>
</tr>
<tr>
<td>6</td>
<td>56.1</td>
<td>3147.2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

\[\sum_{n=5} 175.9^* \quad 6978.2^* \quad 45.3 \quad 1408.4 \]

*Sum based on \(t = 1 \) to 5 d

2. Determine the values of \(k \) and BOD\(_u\). Using Eqs. (2.74) and (2.75),

\[
5a + 175.9b - 45.3 = 0 \\
175.9a + 6978.2b - 1408.4 = 0
\]

Solving for \(a \) and \(b \) yields

\[
a = 17.3 \\
b = -0.23
\]

and therefore

\[
k = -b = 0.23 \text{ d}^{-1} \text{ (base } e)\]

\[
\text{DBO}_u = - \frac{a}{b} = 73.8 \text{ g/m}^3
\]
Effet de température sur DBO

Effet surtout sur k

Van't Hoff Arrhenius

$$k_T = Ae^{-E/RT}$$

k_T: Constante à température T (d^{-1})
A: Coefficient Van Hoff Arrhenius (d^{-1})
E: Énergie activation (J/mol)
R: Constante des gaz (8,314 J/mol · K)
T: Température absolue (K)

On veut utiliser °C et éliminer A.

$$\frac{k_{T_1}}{k_{T_2}} = \exp \left[\frac{E}{RT_2} - \frac{E}{RT_1} \right]$$ (2.77)

$$k_{T_1} = k_{T_2} \exp \left[\left(\frac{E}{RT_1T_2} \right) (T_1 - T_2) \right]$$ (2.78)

De 0°C à 35°C: \[\exp \left[\frac{E}{RT_1T_2} \right] \approx \text{cte.} \]

$$k_{T_1} = k_{T_2} e^{(T_1 - T_2)}$$ (2.79)
Pour eaux usées domestiques

Plus courant \(\Theta = 1,047 \)
4 \(< T < 20^\circ C \) \(\Theta = 1,135 \)
\(T > 20^\circ C \) \(\Theta = 1,056 \)

Exemple 2.11

Données

\[
\begin{align*}
DBO_u &= 30 \text{ g/m}^3 \\
k_{20} &= 0,22 \text{ d}^{-1} \\
Q &= 0,5 \text{ m}^3/s \text{ (égout)} \\
Q_r &= 6 \text{ m}^3/s \text{ (rivière)} \\
\Theta &= 1,056
\end{align*}
\]

\(DBO_5 \) dans rivière si \(T = 25^\circ C \).

Solution

\[
\begin{align*}
k_{25} &= k_{20} \Theta^{(T_1 - T_2)} \\
&= 0,22 \times 1,056^{(25 - 20)} \\
k_{25} &= 0,29 \text{ d}^{-1} \\
DBO_5 &= DBO_u \left(1 - e^{-kT} \right) \\
&= 30 \left(1 - e^{0,29 \times 5} \right)
\end{align*}
\]

\(DBO_5 = 23 \text{ g/m}^3 \)

2-60
Dans la rivière

\[
Q_r C_r = Q_1 C_1 + Q_2 C_2
\]

\[
C_r = \frac{Q_1 C_1 + Q_2 C_2}{Q_r}
\]

\[
= \frac{0,5 \times 23 + 6 \times 0}{0,5 + 6}
\]

\[
C_r = 1,8 \text{ g/m}^3
\]

\[
\text{DBO}_5 = 1,8 \text{ g/m}^3
\]

Pourquoi DBO$_5$ et 20°C standard début siècle Angleterre?

- Durée écoulement des rivières ≈ 5 d.
- Température moyenne été = 18,3°C.

\[
\therefore \text{ Aucune base scientifique}
\]

C'est la tradition
À moins d'avis contraire c'est DBO$_5$
Demande en O_2 exercée par l’azote

$\text{NH}_4^+ \text{, NH}_3$, NO_2^- peuvent être oxydés par des bactéries aérobies.

Oxydation a lieu en deux étapes.

$$\text{NH}_4^+ + \frac{3}{2} \text{O}_2 \xrightarrow{\text{Nitrosomonas}} \text{NO}_2^- + \text{H}_2\text{O} + 2\text{H}^+ (2.80)$$

$$\text{NO}_2^- + \frac{1}{2} \text{O}_2 \xrightarrow{\text{Nitrobacter}} \text{NO}_3^- (2.81)$$

$$\text{NH}_4^+ + 2\text{O}_2 \xrightarrow{} \text{NO}_3^- + 2\text{H}^+ + \text{H}_2\text{O}(2.82)$$

Globalement deux mols de O_2 sont requises pour une mol de $\text{NH}_4^+ \Rightarrow (4,6 \text{ g } \text{O}_2 / \text{g N})$.

- Eaux égout domestique contiennent de 15 à 50 g/m3 d’azote total ce qui correspond à une demande en O_2 de 69 à 230 g/m3.

- La demande en O_2 exercée par l’azote est lente, elle n’est pas observable avant 5 à 8 d.

- Il est possible d’inhiber la nitrification.
FIGURE 2.22
Definition sketch for the exertion of the carbonaceous and nitrogenous biochemical oxygen demand in a waste sample.